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ABSTPACT 

Adaptive multichannel prediction filtering has been completed 

on four data samples,  and adaptive maximum-likelihood signal extraction 

has been done on one sample. 

Comparison of adaptive results with tho^e obtained from 

processing the same data with stationary filters (nonchanging filters designed 

from correlation-function estimates) shows that the adaptive filters approach 

the stationary filters as k    (the rate-of-convergence parameter in the adaptive 
s 

algorithm) approaches 0.    For larger values of k  ,  adaptive prediction-error 

filtering does better than stationary filters on nontime-stationary data,  but 

stationary filters are better on data samples which appear to be time-uniform. 

The performance of an adaptively designed maximum-likelihood 

filter was shown to be essentially equivalent to that of a maximum-likelihood 

filter which was conventionally designed from correlation-function estimates. 
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SECTION I 

INTRODUCTION AND SUMMARY 

This report presents initial results in a study of the adaptive 

filtering of seismic array data.    There is a brief discussion of the theo- 

rectical basis of the adaptive algorithm and its application to multichannel 

prediction and maximum-likelihood filtering.    Adaptive multichannel pre- 

diction filtering has been completed on four data samples,  and maximum- 

likelihood signal extraction has been done on one sample.    Adaptive filter 

results are compared with those obtained from stationary filters,   i. e.. 

from nonchanging filters designed from correlation function estimates. 

Plots of both mean-square-error vs k    (the rate-of-convergence 

parameter in the adaptive algorithm) and of mean-square-error vs time 

indicate that,  in the  limit as k    approaches 0.  the adaptive filters approach 
s 

the stationary Wiener filters.    For larger values of k^  the mean-square- 

error of the adaptive prediction is found to be greater than the Wiener mean- 

square-error for some data samples and less for other samples.    The data 

characteristic which defines the exact behavior of the mean-square-error- 

vs-k    curve appe .rs to be related to the time-stationarity of the data. 
8 

The performance of an adaptively designed maximum-likeli- 

hood filter was shown to be essentially equivalent to that of a maximum- 

likelihood filter which was conventionally designed from cor relation-function 

estimates. 
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SECTION II 

THEORY OF ADAPTIVE FILTERING 

To derive the Widrow adaptive-filter algorithm without 

becoming too involved with notation,  the simple problem of single-channel 

prediction will be used to illustrate the main features of the algorithm. 

Later,  the algorithm will be expanded to the multichannel case; and its 

application to maximum-likelihood signal extraction will be discussed. 

A.    SINGLE-CHANNEL PREDICTION 

Consider a single channel of sampled data points, x.; and let 

the problem be to take p consecutive values of x. and use them to predict 

the value of the next point.    To do this, these values of x. are considered 

to be components of a p-dimensional column vector, 

^n   "   (Vp+r  Vp+Z'  Xn-p+3' V 
VT (2-1) 

, .    X _.    X .„..••• i    x 
.p+] 

To predict the value of the next point, x^,  the scalar 

product is formed from the data vector Xn with the prediction-filter vector. 

£ = (fi'f2'f3 'J 
(2-2) 

The error in the prediction of xn+1 is 

.T 
n+1 n+1     —    —n 



and the squared error is 

2 T T T 7 
e.-sFXX       F-   2F     X     x +  x {l.A\ n+1 _     _n_n   _ —     —n    n+1  r  Xn+1 U  4' 

The expected value of e      , is given bv 
n+1        e' ' 

2 e
nxi    =   I      X«   X        F  -   2F      X    x x.   +   x xl (2-5) n+1        —     —n —n    — —     —n    n+1 n+1 ' 

Fquation (2-5) shows the expected value of e    . , to be representable as a 
n+i 

i   dimensional quadratic surface in F.    The value of F at which the minimum 
2 

of the expected e^   surface occurs is the optimum filter in the least-squares 

sense.    Adaptive processing starts with some arbitrary filter vector F and 

iteratively converges toward the optimum F.    In this report,  the (n+l)th 

iteration of F,   Fn+1 is found from F    by the method of steepest descent, which 

can be summarized in the following two rules: 

1) Move opposite the direction of 

the gradient of the € 2      surfai.« 
n+1 

2) The distance moved in this direction 
is proportional to the magnitude of the 
gradient,  and the constant of propor- 
tionality is called k 

s 

Cast into equation form,  these two rules yield the steepest- 

descent algorithm 

£n+l   =  ^n "   k. V E„2
+I <*"*» 
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2 
In practice,  the gradient of the expected value of e   . . is not 

known.    However,   the Widrow adaptive-filter algorithm meets this problem 

by making the approximation 

~T 2 
n+1 n+1 

2 
7 €    . ,   is obtained by differentiating Equation (2-4) with respect 

^, nr 1 
^T       •   • to F   ,  giving 

V  e 2
i ,   =   2X    X T  F      -   2X     x ^    =  -2"  il X (2-7) 

n+1 —n — n   — n — n    n+1 n+l — n 

Combining Equations (2-7) and (2-6) gives the Widrow single 

channel adaptive algorithm of 

F   i1   =    F    +  2k     €   x1   X (2-8) 
— n+1        —n s     n+J  —n 

B.    MULTICHANNEL PREDICTION FILTERING 

The multichannel case is shown diagrammatically in Figure 

II-1.    Here,  C channels of time-series data are filtered by C digital filters 

to produce an output which is supposed to approximate y  ,  the desired out- 

put.    In this diagram,  the subscript n used on the filter-column vectors, 

the input time-series data vectors,  the desired output, and the prediction 
th 

error indicates their values at the n     time.    The subscript is necessary on 

the filter vector sine e the filter weights change with time in the adaptive algorithm. 

The derivation of the multichannel algorithm follows easily 

from the single-channel algorithm if a new column vector X'   is made by 

placing the column vectors X   (i), i=l to C,   on top of each other and like- 

wise forming a new column vector F_    from tiie JT    (i), i=l to C. 

11-3 
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In terms of the new vectors,   the prediction is given by a 

scalar product of X'  and F'.    Thus the prediction error can be written as 

e      =   y    -  F        X (2-9) n 'n      —n     —n *     7/ 

Using the same general procedure as used in deriving the 

single-channel algorithm,  the multichannel adaptive-filter algorithm is then 

found to be 

F' , .    =   F'    + 2k    €     X' (2-10) — n+1        —n s    n —n v ' 

C.    MAXIMUM-LIKELIHOOD SIGNAL EXTRACTION 

The transformation of maximum-likelihood processing into 

problems of prediction is first considered.    This transformation is desirable 

so that the adaptive-prediction method previously described can be used to 

design maximum-likelihood filters. 

Suppose v,e have an N-channel problem and an L-point filter 

f , where i=l, ... , N and j=l, ... , L. We wish to minimize the output of 

the filter 

ij 

where x      is the output of seismometer i at time t.    The criterion that v 
»»t 't-8 

be an unbiased estimate at time t-s of the signal, which is assumed constant 

acrosj channels, leads to the constraints 

2j »y    =    ij. (2-12) 

U-5 •cl»nc» ••rvloM division 



where 

and 

6.     =   0 for j ^  s 

6.     =1 for j = s 

The constraints may be expressed as 

N 
f..   =   6.     - V    f.. 

js      *~t     ij 
i=2 

and substituted into Equation (2-11).    This gives 

/ N       \ N 

Vs ■ Z hs - E fij) xi.t.j+ Z E 'ij^.t-j 
j i=2      ' i=2   j 

which can be simplified to the form 

N 

y*       =   x. -VVf^fx.       .-x.      .) (2-13) 7t-8 l,t-8      Lu L^   ij\l,t-j        l.t-J/ x ' 
i=2    j 

Referring to Equation (2-3),  Equation (2-13) can be recognized 

as a prodiction-error equation,    Thus, the maximum-likelihood output y 
t-8 

can be considered the error in predicting x.   i       by filters operating on the 

set of data (x.       . - x       .), where the filters are no longer subject to 
i» t-j       i, t-j 

constraints« 

Equations could now be written to specify the filters f    in 

terms of the covariances of the data x     .    These equations would be equiva- 
i» t 

lent to the conventional system of equations but of order (N-l) L instead of 

ML.   However, the purpose of this section is to determine adaptively the 

maximum-likelihood filters. 

U-6 ««tone* ••rvloM dlvlolo^ 



Referring to the algorithm of Equation (2-8) which resulted 

from Equation (2-3),   an adaptive algorithm follows immediately from 

Equation (2-13).    The resulting maximum-likelihood adaptive algorithm 

is 

f..(t+l)   =   f..(t) + 2k    v        (x.       . - x.   f   .) (2-14) 
ij 1J S   7t-S 1, t-.l 1, t-J 

The adaptive maximum-likelihood results in this report are 

derived by using Equation (2-14).    Obviously,  there are other ways of com- 

bining Equation (2-11) and the constraints of Equation (2-12) into a single 

prediction-error equation.    For example,  one could solve for f     and substi- 

tute into Equation (2-11),  thereby predicting channel 3 from traces made by 

subtracting the remaining channels from channel 3.    All of these different 

ways of producing a prediction-error equation are equivalent in the sense that 

the resulting equations specifying the filters in t^rms of the covariances of 

the data x      define equivalent filters.    The adaptive algorithms resulting 
i, t 

from the different prediction-error equations will be different, however. 

All of these algorithms are determined by reducing the dimen- 

sion of the problem by substituting in the constraint equation and then by 

finding the gradient for the reduced set of filter coefficients.    The constraints 

are satisfied by actually using the projection of the subset gradient on the 

constraint plane.    A better method is obtained by finding the gradient at a 

point in time for the complete set of coefficients and projecting this gradient 

on the constraint plane.    This "full" gradient algorithm can be derived from 

Equationa (2-11) and (2-12) by adding and subtracting 

ij     t-j 
ij 

II-7 sotono« ••rvio«s division 



where 

Thus, 

N 
xt-j = N" S xi.t-j 

i=l 

^        =   x^       - 7     £.. (x^  . - x.       .) 
t-8 t-8 *-*      1J        t-J l,t-J (2-15) 

which is in the form of a prediction-error equation so that the corresponding 

adaptive algorithm is 

£..(.+ l)   =   fyW + Zk^^.-x^.) (2-16) 

Note that the constraints are alv ays satisfied if the iteration is started with 

filters satisfying the constraints. 

The final report will give a more complete description of 

maxinrium-likelihood processing by the adaptive method of Equation (2-16). 

- 
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SECTION III 

EXPERIMENTAL RESULTS 

A.    PREDICTION FILTERING 

Adaptive multichannel prediction filtering has been completed 

on forr data samples.    Information about these data — which consist of UBO 

road noise,   UBO normal noise,   the center and first ring of LASA subarray 

Bl,  and 13 channels of array data — is given in Table III-l.    These data 

samples also have been processed using Wiener prediction filters. 

In the filtering program,  the data in each trace are scaled 

by I/(rms value of that trace) so that the variance of all data traces is 1. 

Thus,   results of processing on the different data samples may be compared 

directly. 

Results for each data sample are presented in the form of 

three figures.    The first figure shows mean-square-error vs k    and the 

Wiener filter mean-square-error.   The second shows mean-square-error vs 

time for the Wiener filter, the adaptive filter with the large k ,  and the 
s 

adaptive filter with the small k .    It should be noted that the origin in these 

figures does not correspond to zero mean-square-error.    The third figure 

is a plot of the channel to be predicted plus the prediction and prediction 

error of the Wiener and large and small k    filters. 

Power spectra of the channel being predicted and of the 

Wiener and adaptive error traces have been computed for UBO road noise 

and LASA subarray Bl. 

1.    UBO Road Noise 

A major highway passes within a few miles of the northwest 

extent of the UBO array.    The UBO road noise (Figure III-l). which is pre- 

Uominantly Rayleigh energy believed to originate along this highway, does not 

arrive as a plane wavefront, is time varying, and is attenuated across the array. 

III. 1 sotoro« ••rvioos division 
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Prior to any multichannel filtering,  the data were prefiltered 

with an antialiasing,   slightly prewhitening filter and resampled to a sample 
period of 72 msec. 

A 27-point Wiener filter with its output point at the center of 

the filter had been designed previously1 from these data to predict channel 

10 using channels 1 through 9.    The mean-square prediction error of the 

Wiener filter,  when applied to the normalized design data, was 0. 147. 

Two adaptive processing runs,  consisting of several passes 

through the data for each run.  were made on this road-noise sample.    At 

the beginning of the first pass of each run.  the filter coefficients were set 

to 0; on successive passes,  the coefficients initially were equal to their 

values at the end of the previous pass.    The first run consisted of nine passes 

where k8 equaled 0.002 on the first pass and was scaled by two-thirds on each 

successive pass,  ending with a value of 0. 000117 after eight passes.    For the 

ninth pass. ^ equaled 0.00005.    In the second run. five passes were made, 

with k8 being equal to 0. 0005 on the first pass; this was incremented by 

0. 0005 for each additional pass.    Figure III-2 plots as a function of k   the 

mean-square prediction error for each of these passes,  excluding the'first 

two in each run which were learning passes. 

The fact that the adaptive filter does better than the Wiener 

filter for intermediate values of k8 is attributed to the nonstationarity of 

UBO road noise.    Figure 111-3 shows mean-square-error over 50.point 

intervals as a function of location in the data sample.    The Wiener and small 

k8 adaptive plots are similar,  while the plot for the strongly adapting filter 

appears to be independent of the others.      This result supports the hypothesis 

that UBO road noise is highly nonstation^ry. 

■ 
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Figure III-4 shows the energy of the power spectrum of channel 

10 to be concentrated around 2. 5 cps.    The 2. 5-cp8 peak is reduced least by 

the Wiener filter and is reduced most by the k    = 0. 0015 filter,  with the 

k    = 0. 00005 filter falling between.    Additional evidence of the nonstationarity 
s 

of the data is the dissimilarity between the Wiener and the ks = 0. 0015 error 

spectra. 

Figure III-5 shows channel 10 (the  channel being predicted) as 

well as the prediction and prediction err«, for the Wiener and small and large 

k    filters, 
s 

2.    UBO Normal Noise 

A sample of UBO data,   called normal noise because it appears 

to travel across the array as unattenuated plane waves, is shown in Figure 

m-6.    The UBO normal-noise sample was prefiltered.   resampled,  normalized, 

and Wiener-filtered with the same procedures used for the UBO road noise. 

The normalized mean-square prediction error of the Wiener filter was 0.28. 

Three adaptive processing runs were made,  one with eight 

passes and two with one pass with the filter weights being initially set to 0 

at the beginning of each run.    For the eight passes,  ks had the values of 

0.0015 (learning).   0.0015,  0.001.   0.0005,   0.00025,  0.000125, 0.00005.  and 

0. 002.    Values of k    for the second and third runs were 0. 0025 and 0. 003, 
s 

respectively.    Figure 111-1 shows the mean-square-error from all runs 

(except the first learning pass). 

The mean-square-error - vs - ks curve for these data differs 

from the corresponding curve for road noise.    Mean-square-error increase« 

with increasing ks up to approximately kg = 0. 001 and decreases with in- 

creasing k   from k    = 0. 001 to 0. 0025.    Mean-square-error increases above 
s s 

k   « 0. 0025 where the algorithm becomes unstable. 
s 
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 CHANNEL 10 

 WIENER ERROR 
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Figure III-4.   UBO Road Noise, Power Spectra ot Channel 10,  Wiener Error, 
and Adaptive Error« 
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Figure III-5.    UBO Road Noise,  Wiener and Adaptive Filter Outputs 
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Increasing mean-square-error with increasing k   is the 
8 

expected result for time-stationary data,  since a larger k    corresponds to 

a smaller time constant.    Thus,  the effective length of the data used in de- 

signing the filter is decreased,  which means statistically that the misdesign 

and MSE of the filter are increased. 

The dip in the MSE at k   =0. 0025 in Figure III-7 is surprising. 

One possible explanation for this phenomenon is that the data are time varying, 

with a time constant which matches the adaptive time constant corresponding 

to k   =0. 0025.    This is probably not the correct reason for the dip since a 

similar effect is seen in other MSE-vs-kB curves (Figures III-11 and III-16). 

A more likely explanation is that thip decrease in mean-square-error is a 

false-gain effect caused by the narrow frequency bandwidth of the data.    The 

second interpretation is based on the fact that a data point in a narrowband time 

series can be well predicted using the recent past of the trace.   At first glance, 

this observation does not appear to apply because only data from channels 1 

through 9 are used to predict channel 10.    However, the adaptive filter, by 

means of the error term in the adaptive algorithm,  is influenced by the chan- 

nel 10 data values.    Thus,  indirectly,  the adaptive-filter prediction does use 

the immediate past of channel 10, with the immediate past being more empha- 

sized for larger values of k .    This phenomenon will be discussed further in 

a later report. 

The plot of mean-square-error vs time in Figure III-8 for 

k   = 0.0015 resembles the Wiener plot, indicating that t\e data are stationary. 

Figure Hi-9 shows the channel to be predicted and the pre- 

diction and prediction error for the Wiener and large k   and small k   cases 
s 8 

for UBO normal noise.   An interesting point of comparison between Wiener 

and adaptive filtering is the computational requirements of each method. 
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Figure in-9.   ÜBO Normal Noise. Wiener and Adaptive Filter Outputs 
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On the IBM 7044,  the total time to design and apply the Wiener filters to 

UBO normal noise was 30 min.    The procedure involved five separate runs. 

One  run of three adaptive passes through the data would require less than 

9 min and would result in approximately the same filters. 

3.    LAS A Subarray Bl 

Another data set used the center seismometer and the first 

ring of LASA subarray Bl.    The data shown in Figure III-10 have been 

antialias-filtered and resampled to a sample rate of 100 msec.    Wiener 

filters,   20-points long, were designed to predict one point ahead on channel 1 

based on channels 1 through 7.    The resulting normalized mean-square-error 

was 0.031, 

One adaptive filtering run of eight passes was made on these data with 

kg values ofO. 0015 (learning), 0.0015. 0.001, 0.0005, 0.00025, 0.000175, 0.0001, 

0.00005,  and 0.002.    The mean-square-error - vs - k    curve (Figure III-11) 

resulting from the adaptive filtering of these dita has the same concave- 

downward shape as seen for UBO normal noise.    The plot for k   = 0. 001 
s 

(Figure III-12) resembles the k    = 0. 00005 curve enough that the data can be 
s 

considered time-stationary, although not to the extent of the UBO normal noise. 

The question of a concave-upward or concave-downward shape for the mean- 

square-error - vs - kB curve apparently involves the time-stationarity of 

the data. 

The power spectrum of channel 1 (Figure III-13) shows no 

dominant high frequency as is the case for UBO road noise.    The similarity 

in the spectra of the k   = 0. 001 error and the k   =0. 00005 error is further 
8 8 

indication of the stationarity of this data sample. 

Figure 111-14 shows the Wiener and adaptive filtering results 

for this LASA data set. 
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Figure IE-13,    LASA Subarray Bl Center Seismometer and First Ring — 
Power Spectra of Channel 1,  Wiener Error,  and Adaptive Errors 
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4.    Array Data 

The 13 channels of array data shown in Figure III-15 have 

been prewhitened and resampled.    A 37-point Wiener filter, with output 

point at the center, was designed for these data to predict channel 1 from 

channels 2 through 13.    The resulting normalized mean-square-error was 

0.16. 

Starting with the filter weights set to 0,  one adaptive-filtering 

run having six passes with ';    values of 0. 0005 (learning),  0. 0005,  0. 00025, 
s 

0.000125,   0.00005, and 0.00075 was made on these data.    Figure 111-16 

shows intermediate values of k    resulting in errors smaller than the Wiener 

mean-square-error.    In Figure III-17,  the dissimilarity between the Wiener 

and the k    = 0. 0005 plots,  especially in the first part of the data,  indicates 
s 

that the data are nontime-stationary.     (The behavior of the UBO road noise 

was the same and was also nontime-stationary.) 

Figure III-18 shows the predictions,  the prediction error, and 

the channel to be predicted for the Wiener and large k    and small k    filters. 
s s 

B.    MAXIMUM-LIKELIHOOD FILTERING 

To compare adaptive maximum-likelihood filtering with 

conventional maximum-likelihood filtering, the same basic multichannel 
2 

data used by SDL in their conventional maximum-likelihood study   were 

used for our adaptive maximum-likelihood work.    These data, which came 

from LASA subarray Cl,  consisted of 19 of the possible 25 subarray channels, 

the six seismometers in the inner ring being omitted.   A 3250-point,  100-msec 

sampling-period data segment, which included the signal arrival from an 

Aleutian Islands event, was the common data.   The time traces were pre- 

pared by first filtering them with a 0.8- to 2.8-cpr bandpass filter, which 

was thought to be the same as in the SDL study,  »ttd then time-shifting 

them to align the signal. 
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To form a prediction problem,  traces 2 through 19 were 

subtracted from channel 1,  yielding 18 difference traces that were normalized 

and used to predict channel 1,  which was also normalized to a variance of 1. 

One-sided,  21-point adaptive maximum-likelihood filters, 

similar to the SDL filters, were designed by two methods.    The first, 

beginning with the filter weights set to 0,  included three passes through the 

data interval from 750 to 2250 points,  starting with k    = 0. 0005 for the first 
a 

pass and using decreasing values of k   (0. 00025,  0.00005} for each successive 
s 

pass.    At the end of the third pass,  the filters were fixed and the entire data 

sample was filtered with these fixed filters.    The SDL conventionally designed 

maximum-likelihood filter vised the same 750- to 2250-point filtering interval. 

The second method began with filter weights of 0, used a k   of 0. 00005, and 
s 

let the filters operate on-line (i. e.,  adapt and filter) for one pass through 

the db'ta. 

Figure III-19 shows the outputs of a phased sum, the con- 

ventional maximum-likelihood filter, and the two types of adaptive maximum- 

likelihood filters.    As can be seen,  the adaptively designed fixed filter l.i 

essentially equivalent in performance to that of the SDL-designed filter.   The 

on-line filter, which had been adapting for 1725 points at the beginning of the 

shown trace,  is about 3-db poorer than the off-line filters. 

It was planned to have a quantitative comparison of the SDL 

filter with the adaptively designed filter.    However, the frequency response 

of our bandpass filter was appreciably narrower than that of the SDL band- 

pass filter,  enough so that measured signal-to-noise ratio improvements 

have little meaning.    It is planned to repeat this experiment using the SDL 

bandpass filter so that our results can be compared in a more precise 

manner. 
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SECTION IV 

CONCLUSIONS AND RECOMMENDATIONS 

From the theory of adaptive filtering,  adaptive prediction 

filtering results would be expected to show several things.    The adaptive 

filter should approach the Wiener filter ask    approaches 0.    This con- 
s 

vergence, which was not explicitly searched for,  seems to be true experi- 

mentally. 

Another expected result is that the adaptive mean-square- 

error may be less than the Wiener mean-square-error if the data are time- 

varying but should always be greater if the data are stationary.    The excess 

mean-square-error for stationary data can be shown to result from random 

oscillations of the filter coefficients about their optimum values. 3   Smaller 

adaptive mean-square-errors for nonstationary data are produced by the 

ability of the filters to track the changing minimum of the quadratic error- 

squared surface.    These theoretical expectations seem to be verified in 

general by our experimental results.    The exception is the interesting phe- 

nomenon of the dip in mean-square-error for large values of k   (just before 

the algorithm becomes unstable).    This MSE decrease, which is thought to 

be false gain caused by the narrow frequency bandwidth of the data, is a 

subject for future study.    The final expected theoretical result is that,  as 

kB increases, a point is reached where the algorithm becomes unstable. 

A study of the parameters controlling the stability of the algorithm is being 
made. 

IV. 1 



■ 

The following summarizes our conclusions and recommendations, 

• Results of this study indicate that,  in the limit 
as ks approaches 0, the resulting adaptive filler 
approaches the Wiener filter; therefore,  the 
adaptive processing scheme could be of vaJa*; 
as an economical means of Wiener filter design 

• As data statistics change,  the optimum value 
ofk8 changes; therefore, the investigation of 
methods of varying k8 with changing data statistics 
is recommended 

• Some data samples,  when filtered adaptively, 
result in concave-downward mean-square-error- 
vs-k8 curves while other data samples result in 
a concave-upward curve; preliminary results 
given in this report indicate that the data char- 
acteristic which determines the shape of this 
curve is related to the time-stationarity of 
the data 

• 

• 

Adaptive maximum-likelihood filtering results 
indicate that this type of filtering can be done 
with much less time and expense than required 
by conventional means 

The inclusion of methods of extending the adaptive r 

filtering concepts to the problem of signal extraction 
based on a theoretical signal model is recommended 
for any future study 

Only one prewhitened sample is included in the data 
processed here; the other three samples will be pre- 
whitened and adaptively filtered by the same pro- 
cedure used on the raw data in this report in order 
to determine the effects of prewhitening on adaptive 
filtering, and a later report will present these results 
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